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Current HPC Platforms : COTS-Based Clusters 
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COTS = Commercial off-the-shelf 
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Memory Architectures 
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Shared Memory 

 Single address space for all processors 

 

 

 

 

 

 

Distributed Memory 
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MPI = Message Passing Interface 

MPI is a specification for the developers and users of message passing libraries. By itself, it 

is NOT a library – but rather the specification of what such a library should be. 

MPI primarily addresses the message-passing parallel programming model : data is moved 

from the address space of one process to that of another process through cooperative 

operations on each process. 

Simply stated, the goal of the message Passing Interface is to provide a widely used 

standard for writing message passing programs. The interface attempts to be : 

 Practical 

 Portable 

 Efficient 

 Flexible 

What is MPI? 
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The MPI standard has gone through a number of revisions, with the most recent version 

being MPI-3. 

Interface specifications have been defined for C and Fortran90 language bindings : 

 C++ bindings from MPI-1 are removed in MPI-3 

 MPI-3 also provides support for Fortran 2003 and 2008 features 

Actual MPI library implementations differ in which version and features of the MPI 

standard they support. Developers/users will need to be aware of this. 

What is MPI? 
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Originally, MPI was designed for distributed memory architectures, which were becoming 

increasingly popular at time (1980s – early 1990s). 

 

 

 

 

 

 

As architecture trends changed, shared memory SMPs were combined over networks 

creating hybrid distributed memory/shared memory systems. 

 

Programming Model 
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MPI implementers adapted their libraries to handle both types of underlying memory 

architectures seamlessly. They also adapted/developed ways of handing different 

interconnects and protocols. 

 

 

 

 

 

Today, MPI runs on virtually any hardware platform : 

 Distributed Memory 

 Shared Memory 

 Hybrid 

The programming model clearly remains a distributed memory model however, regardless 

of the underlying physical architecture of the machine. 

 

Programming Model 
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Standardization 

 MPI is the only message passing library which can be considered a standard. It is 

supported on virtually all HPC platforms. Practically, it has replaced all previous 

message passing libraries. 

Portability 

 There is little or no need to modify your source code when you port your application 

to a different platform that supports (and is compliant with) the MPI standard. 

Performance Opportunities 

 Vendor implementations should be able to exploit native hardware features to 

optimize performance. 

Functionality 

 There are over 440 routines defined in MPI-3, which includes the majority of those in 

MPI-2 and MPI-1. 

Availability 

 A Variety of implementations are available, both vendor and public domain. 

Reasons for Using MPI 
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MPI has resulted from the efforts of numerous individuals and groups that began in 1992. 

1980s – early 1990s : Distributed memory, parallel computing develops, as do a number of 

incompatible soft ware tools for writing such programs – usually with tradeoffs between 

portability, performance, functionality and price. Recognition of the need for a standard 

arose. 

Apr 1992 : Workshop on Standards for Message Passing in a Distributed Memory 

Environment, Sponsored by the Center for Research on Parallel Computing, Williamsburg, 

Virginia. The basic features essential to a standard message passing interface were 

discussed, and a working group established to continue the standardization process. 

Preliminary draft proposal developed subsequently. 

History and Evolution 
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Nov 1992 : Working group meets in Minneapolis. MPI draft proposal (MPI1) from ORNL 

presented. Group adopts procedures and organization to form the MPI Forum. It eventually 

comprised of about 175 individuals from 40 organizations including parallel computer 

vendors, software writers, academia and application scientists. 

Nov 1993 : Supercomputing 93 conference – draft MPI standard presented. 

May 1994 : Final version of MPI-1.0 released. 

MPI-1.0 was followed by versions MPI-1.1 (Jun 1995), MPI-1.2 (Jul 1997) and MPI-1.3 (May 

2008). 

MPI-2 picked up where the first MPI specification left off, and addressed topics which went 

far beyond the MPI-1 specification. Was finalized in 1996. 

MPI-2.1 (Sep 2009), and MPI-2.2 (Sep 2009) followed. 

Sep 2012 : The MPI-3.0 standard was approved. 

History and Evolution 
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Documentation for all versions of the MPI standard is available at : 

 http://www.mpi-forum.org/docs/ 

 

History and Evolution 
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A General Structure of the MPI Program 
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Required for all programs that make MPI library calls. 

 

 

With MPI-3 Fortran, the USE mpi_f80 module is preferred over using the include file shown 

above. 

A Header File for MPI routines 
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C include file Fortran include file 

#include “mpi.h” include ‘mpif.h’ 



C names are case sensitive; Fortran name are not. 

Programs must not declare variables or functions with names beginning with the prefix 

MPI_ or PMPI_ (profiling interface). 

The Format of MPI Calls 
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C Binding 

Format rc = MPI_Xxxxx(parameter, …) 

Example rc = MPI_Bsend(&buf, count, type, dest, tag, comm) 

Error code Returned as “rc”, MPI_SUCCESS if successful. 

Fortran Binding 

Format CALL MPI_XXXXX(parameter, …, ierr) 
call mpi_xxxxx(parameter, …, ierr) 

Example call MPI_BSEND(buf, count, type, dest, tag, comm, ierr) 

Error code Returned as “ierr” parameter, MPI_SUCCESS if successful. 



MPI uses objects called communicators and groups to define which collection of processes 

may communicate with each other. 

Most MPI routines require you to specify a communicator as an argument. 

Communicators and groups will be covered in more detail later. For now, simply use 

MPI_COMM_WORLD whenever a communicator is required - it is the predefined 

communicator that includes all of your MPI processes. 

Communicators and Groups 
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Within a communicator, every process has its own unique, integer identifier assigned by the 

system when the process initializes. A rank is sometimes also called a “task ID”. Ranks are 

contiguous and begin at zero. 

Used by the programmer to specify the source and destination of messages. Often used 

conditionally by the application to control program execution (if rank = 0 do this / if rank = 

1 do that). 

Rank 
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Most MPI routines include a return/error code parameter, as described in “Format of MPI 

Calls” section above. 

However, according to the MPI standard, the default behavior of an MPI call is to abort if 

there is an error. This means you will probably not be able to capture a return/error code 

other than MPI_SUCCESS (zero). 

The standard does provide a means to override this default error handler. You can also 

consult the error handing section of the MPI Standard located at http://www.mpi-

forum.org/docs/mpi-11-html/node148.html . 

The types of errors displayed to the user are implementation dependent. 

Error Handling 
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MPI_Init 

 Initializes the MPI execution environment. This function must be called is every MPI 
program, must be called before any other MPI functions and must be called only once 
in an MPI program. For C programs, MPI_Init may be used to pass the command line 
arguments to all processes, although this is not required by the standard and is 
implementation dependent. 

 

 

 

 

 Input parameters 

• argc : Pointer to the number of arguments 

• argv : Pointer to the argument vector 

 ierr : the error return argument 

Environment Management Routines 
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C Fortran 

MPI_Init(&argc, &argv) MPI_INIT(ierr) 



MPI_Comm_size 

 Returns the total number of MPI processes in the specified communicator, such as 
MPI_COMM_WORLD. If the communicator is MPI_COMM_WORLD, then it represents 
the number of MPI tasks available to your application. 

 

 

 

 

 Input parameters 

• comm : communicator (handle) 

 Output parameters 

• size : number of processes in the group of comm (integer) 

 ierr : the error return argument 

Environment Management Routines 
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C Fortran 

MPI_Comm_size(comm, &size) MPI_COMM_SIZE(comm, size, ierr) 



MPI_Comm_rank 

 Returns the rank of the calling MPI process within the specified communicator. Initially, 
each process will be assigned a unique integer rank between 0 and number of tasks -1 
within the communicator MPI_COMM_WORLD. This rank is often referred to as a task 
ID. If a process becomes associated with other communicators, it will have a unique 
rank within each of these as well. 

 

 

 

 

 Input parameters 

• comm : communicator (handle) 

 Output parameters 

• rank : rank of the calling process in the group of comm (integer) 

 ierr : the error return argument 

Environment Management Routines 
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C Fortran 

MPI_Comm_rank(comm, &rank) MPI_COMM_SIZE(comm, rank, ierr) 



MPI_Finalize 

 Terminates the MPI execution environment. This function should be the last MPI 
routine called in every MPI program – no other MPI routines may be called after it. 

 

 

 

 

 ierr : the error return argument 

Environment Management Routines 
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C Fortran 

MPI_Finalize() MPI_FINALIZE(ierr) 



MPI_Abort 

 Terminates all MPI processes associated with the communicator. In most MPI 
implementations it terminates ALL processes regardless of the communicator specified. 

 

 

 

 

 Input parameters 

• comm : communicator (handle) 

• errorcode : error code to return to invoking environment 

 ierr : the error return argument 

Environment Management Routines 
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C Fortran 

MPI_Abort(comm, errorcode) MPI_ABORT(comm, errorcode, ierr) 



MPI_Get_processor_name 

 Return the processor name. Also returns the length of the name. The buffer for “name” 
must be at least MPI_MAX_PROCESSOR_NAME characters in size. What is returned into 
“name” is implementation dependent – may not be the same as the output of the 
“hostname” or  “host” shell commands. 

 

 

 

 

 

 Output parameters 

• name : A unique specifies for the actual (as opposed to virtual) node. This must 
be an array of size at least MPI_MAX_PROCESOR_NAME . 

• resultlen : Length (in characters) of the name. 

 ierr : the error return argument 

Environment Management Routines 
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C Fortran 

MPI_Get_processor_name(&name, 
&resultlength) 

MPI_GET_PROCESSOR_NAME(name, 
resultlength, ierr) 



MPI_Get_version 

 Returns the version (either 1 or 2) and subversion of MPI. 

 

 

 

 

 

 Output parameters 

• version : Major version of MPI (1 or 2) 

• subversion : Miner version of MPI.  

 ierr : the error return argument 

Environment Management Routines 
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C Fortran 

MPI_Get_version(&version, 
&subversion) 

MPI_GET_VERSION(version, 
subversion, ierr) 



MPI_Initialized 

 Indicates whether MPI_Init has been called – returns flag as either logical true(1) or 
false(0). 

 

 

 

 

 

 Output parameters 

• flag : Flag is true if MPI_Init has been called and false otherwise. 

 ierr : the error return argument 

Environment Management Routines 

27 

C Fortran 

MPI_Initialized(&flag) MPI_INITIALIZED(flag, ierr) 



MPI_Wtime 

 Returns an elapsed wall clock time in seconds (double precision) on the calling 
processor.  

 

 

 

 

 Return value 

• Time in seconds since an arbitrary time in the past. 

MPI_Wtick 

 Returns the resolution in seconds (double precision) of MPI_Wtime. 

 

 

 

 

 Return value 

• Time in seconds of the resolution MPI_Wtime. 

 

Environment Management Routines 
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C Fortran 

MPI_Wtime() MPI_WTIME() 

C Fortran 

MPI_Wtick() MPI_WTICK() 



Example: Hello world 
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#include<stdio.h> 

#include"mpi.h" 

 

int main(int argc, char *argv[]) 

{ 

 int rc; 

 

 rc = MPI_Init(&argc, &argv); 

 

 printf("Hello world.\n"); 

 

 rc = MPI_Finalize(); 

 

 return 0; 

} 



Example: Hello world 
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$ module load [compiler] [mpi] 

$ mpicc hello.c 

$ mpirun –np 4 –hostfile [hostfile] ./a.out 

ibs0001 slots=2 

ibs0002 slots=2 

ibs0003 slots=2 

ibs0003 slots=2 

… 

Execute a mpi program. 

Make out a hostfile. 



Example : Environment Management Routine 
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#include "mpi.h” 

#include <stdio.h> 

 

int main(argc,argv) 

int argc; 

char *argv[]; { 

int  numtasks, rank, len, rc;  

char hostname[MPI_MAX_PROCESSOR_NAME]; 

 

rc = MPI_Init(&argc,&argv); 

if (rc != MPI_SUCCESS) { 

  printf ("Error starting MPI program. Terminating.\n"); 

  MPI_Abort(MPI_COMM_WORLD, rc); 

  } 

 

MPI_Comm_size(MPI_COMM_WORLD,&numtasks); 

MPI_Comm_rank(MPI_COMM_WORLD,&rank); 

MPI_Get_processor_name(hostname, &len); 

printf ("Number of tasks= %d My rank= %d Running on %s\n", numtasks,rank,hostname); 

 

/*******  do some work *******/ 

 

rc = MPI_Finalize(); 

 

return 0; 

 

} 



Coffee break 



I I .  MPI Basic Send & Receive  



MPI point-to-point operations typically involve message passing between two, and only two, 

different MPI tasks. One task is performing a send operation and the other task is 

performing a matching receive operation. 

There are different types of send and receive routines used for different purposes. 

 Synchronous send 

 Blocking send/blocking receive 

 Non-blocking send/non-blocking receive 

 Buffered send 

 Combined send/receive 

 “Ready” send 

Any type of send routine can be paired with any type of receive routine. 

MPI also provides several routines associated with send – receive operations, such as those used to wait 

for a message’s arrival or prove to find out if a message has arrived. 

Types of Point-to-Point Operations 
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In a perfect world, every send operation would be perfectly synchronized with its matching 

receive. This is rarely the case. Somehow or other, the MPI implementation must be able to 

deal with storing data when the two tasks are out of sync. 

Consider the following two cases 

 A send operation occurs 5 seconds before the receive is ready – where is the message 
while the receive is pending? 

 Multiple sends arrive at the same receiving task which can only accept one send at a ti
me – what happens to the messages that are “backing up”? 

Buffering 
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The MPI implementation (not the MPI standard) decides what happens to data in these typ

es of cases. Typically, a system buffer area is reserved to hold data in transit. 

Buffering 
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System buffer space is : 

 Opaque to the programmer and managed entirely by the MPI library 

 A finite resource that can be easy to exhaust 

 Often mysterious and not well documented 

 Able to exist on the sending side, the receiving side, or both 

 Something that may improve program performance because it allows send – receive o
perations to be asynchronous. 

Buffering 
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Most of the MPI point-to-point routines can be used in either blocking or non-blocking mode. 

Blocking 

 A blocking send routine will only “return” after it is safe to modify the application buffer (yo
ur send data) for reuse. Safe means that modifications will not affect the data intended for th
e receive task. Safe dose not imply that the data was actually received – it may very well be si
tting in a system buffer. 

 A blocking send can be synchronous which means there is handshaking occurring with the re
ceive task to confirm a safe send. 

 A blocking send can be asynchronous if a system buffer is used to hold the data for eventual 
delivery to the receive. 

 A blocking receive only “returns” after the data has arrived and is ready for use by the progra
m. 

Non-blocking 

 Non-blocking send and receive routines behave similarly – they will return almost immediatel
y. They do not wait for any communication events to complete, such as message copying fro
m user memory to system buffer space or the actual arrival of message. 

 Non-blocking operations simply “request” the MPI library to perform the operation when it is 
able. The user can not predict when it is able. The user can not predict when that will happen
. 

 It is unsafe to modify the application buffer (your variable space) until you know for a fact th
e requested non-blocking operation was actually performed by the library. There are “wait” r
outines used to do this. 

 Non-blocking communications are primarily used to overlap computation with communicatio
n and exploit possibale performance gains. 

Blocking vs. Non-blocking 
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I I I .  Point to Point Communicat ion Routines  



MPI point-to-point communication routines generally have an argument list that takes one 

of the following formats : 

 

 

 

 

Buffer 

 Program (application) address space that references the data that is to be sent or recei
ved. In most cases, this is simply the variable name that is be sent/received. For C prog
rams, this argument is passed by reference and usually must be prepended with an am
persand : &var1 

Data count 

 Indicates the number of data elements of a particular type to be sent. 

MPI Message Passing Routine Arguments 
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Blocking sends MPI_Send(buffer, count, type, dest, tag, comm) 

Non-blocking sends MPI_Isend(buffer, count, type, dest, tag, comm, request) 

Blocking receive MPI_Recv(buffer, count, type, source, tag, comm, status) 

Non-blocking receive MPI_Irecv(buffer, count, type, source, tag, comm, request) 



Data type 

 For reasons of portability, MPI predefines its elementary data types. The table below li
sts those required by the standard. 

MPI Message Passing Routine Arguments 
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C Data Types 

MPI_CHAR signed char 

MPI_SHORT signed short int 

MPI_INT signed int 

MPI_LONG signed long int 

MPI_SIGNED_CHAR signed char 

MPI_UNSIGNED_CHAR unsigned char 

MPI_UNSIGNED_SHORT unsigned short int 

MPI_UNSIGNED unsigned int 

MPI_UNSIGNED_LONG unsigned long int 

MPI_FLOAT float 

MPI_DOUBLE double 

MPI_LONG_DOUBLE long double 



Destination 

 An argument to send routines that indicates the process where a message should be d
elivered. Specified as the rank of the receiving process. 

Tag 

 Arbitrary non-negative integer assigned by the programmer to uniquely identify a mes
sage. Send and receive operations should match message tags. For a receive operation, 
the wild card MPI_ANY_TAG can be used to receive any message regardless of its tag. T
he MPI standard guarantees that integers 0 – 32767 can be used as tags, but most imp
lementations allow a much larger range than this. 

Communicator 

 Indicates the communication context, or set of processes for which the source or desti
nation fields are valid. Unless the programmer is explicitly creating new communicator, 
the predefined communicator MPI_COMM_WORLD is usually used. 

MPI Message Passing Routine Arguments 
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Status 

 For a receive operation, indicates the source of the message and the tag of the messag
e. 

 In C, this argument is a pointer to predefined structure MPI_Status (ex. stat.MPI_SOUR
CE, stat.MPI_TAG). 

 In Fortran, it is an integer array of size MPI_STATUS_SIZE (ex. stat(MPI_SOURCE), stat(M
PI_TAG)). 

 Additionally, the actual number of bytes received are obtainable from Status via MPI_G
et_out routine. 

Request 

 Used by non-blocking send and receive operations. 

 Since non-blocking operations may return before the requested system buffer space is 
obtained, the system issues a unique “request number”. 

 The programmer uses this system assigned “handle” later (in a WAIT type routine) to d
etermine completion of the non-blocking operation. 

 In C, this argument is pointer to predefined structure MPI_Request. 

 In Fortran, it is an integer. 

MPI Message Passing Routine Arguments 
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Example : Blocking Message Passing Routine (1/2) 
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#include "mpi.h" 

#include <stdio.h> 

 

int main(argc,argv)  

int argc; 

char *argv[];  { 

int numtasks, rank, dest, source, rc, count, tag=1;   

char inmsg, outmsg='x'; 

MPI_Status Stat; 

 

MPI_Init(&argc,&argv); 

MPI_Comm_size(MPI_COMM_WORLD, &numtasks); 

MPI_Comm_rank(MPI_COMM_WORLD, &rank); 

 

if (rank == 0) { 

  dest = 1; 

  source = 1; 

  rc = MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD); 

  rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Stat); 

  }  

 

else if (rank == 1) { 

  dest = 0; 

  source = 0; 

  rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Stat); 

  rc = MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD); 

  } 



Example : Blocking Message Passing Routine (2/2) 

45 

 

rc = MPI_Get_count(&Stat, MPI_CHAR, &count); 

printf("Task %d: Received %d char(s) from task %d with tag %d \n", 

       rank, count, Stat.MPI_SOURCE, Stat.MPI_TAG); 

 

MPI_Finalize(); 

 

return 0; 

 

} 



Example : Dead Lock 
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#include "mpi.h" 

#include <stdio.h> 

 

int main(argc,argv)  

int argc; 

char *argv[];  { 

int numtasks, rank, dest, source, rc, count, tag=1;   

char inmsg, outmsg='x'; 

MPI_Status Stat; 

 

MPI_Init(&argc,&argv); 

MPI_Comm_size(MPI_COMM_WORLD, &numtasks); 

MPI_Comm_rank(MPI_COMM_WORLD, &rank); 

 

if (rank == 0) { 

  dest = 1; 

  source = 1; 

  rc = MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD); 

  rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Stat); 

  }  

 

else if (rank == 1) { 

  dest = 0; 

  source = 0; 

  rc = MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD); 

  rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Stat); 

} 



Example : Non-Blocking Message Passing Routine (1/2) 
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#include "mpi.h" 

#include <stdio.h> 

 

int main(argc,argv) 

int argc; 

char *argv[];  { 

int numtasks, rank, next, prev, buf[2], tag1=1, tag2=2; 

MPI_Request reqs[4]; 

MPI_Status stats[2]; 

 

MPI_Init(&argc,&argv); 

MPI_Comm_size(MPI_COMM_WORLD, &numtasks); 

MPI_Comm_rank(MPI_COMM_WORLD, &rank); 

 

prev = rank-1; 

next = rank+1; 

if (rank == 0)  prev = numtasks - 1; 

if (rank == (numtasks - 1))  next = 0; 

Nearest neighbor exchange in a ring topology 



Example : Non-Blocking Message Passing Routine (2/2) 
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MPI_Irecv(&buf[0], 1, MPI_INT, prev, tag1, MPI_COMM_WORLD, &reqs[0]); 

MPI_Irecv(&buf[1], 1, MPI_INT, next, tag2, MPI_COMM_WORLD, &reqs[1]); 

 

MPI_Isend(&rank, 1, MPI_INT, prev, tag2, MPI_COMM_WORLD, &reqs[2]); 

MPI_Isend(&rank, 1, MPI_INT, next, tag1, MPI_COMM_WORLD, &reqs[3]); 

   

      {  do some work  } 

 

MPI_Waitall(4, reqs, stats); 

 

MPI_Finalize(); 

 

return 0; 

 

} 



Coffee break 



Advanced Example : Monte-Carlo Simulation 
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<Problem> 

 Monte carlo simulation 

 Random number use 

 PI = 4 ⅹAc/As 

 

<Requirement> 

 N’s processor(rank) use 

 P2p communication 

 

 

r 



Advanced Example : Monte-Carlo Simulation for PI 
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#include <stdio.h> 

#include <stdlib.h> 

#include <math.h> 

 

int main() { 

const long num_step=100000000; 

long i, cnt; 

double pi, x, y, r; 

 

printf(“-----------------------------------------------------------\n”); 

pi = 0.0; 

cnt = 0; 

r = 0.0; 

 

for (i=0; i<num_step; i++) { 

  x = rand() / (RAND_MAX+1.0); 

  y = rand() / (RAND_MAX+1.0); 

  r = sqrt(x*x + y*y); 

  if (r<=1) cnt += 1; 

} 

 

pi = 4.0 * (double)(cnt) / (double)(num_step); 

printf(“PI = %17.15lf (Error = %e)\n”, pi, fabs(acos(-1.0)-pi)); 

printf(“-----------------------------------------------------------\n”); 

 

return 0; 

 

} 



Advanced Example : Numerical integration for PI 

52 

<Problem> 

 Get PI using Numerical integration 

 

 

 

 

 

 

<Requirement> 

 Point to point communication 
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Advanced Example : Numerical integration for PI 
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#include <stdio.h> 

#include <math.h> 

 

int main() { 

const long num_step=100000000; 

long i; 

double sum, step, pi, x; 

step = (1.0/(double)num_step); 

sum=0.0; 

 

printf(“-----------------------------------------------------------\n”); 

 

for (i=0; i<num_step; i++) { 

x = ((double)i - 0.5) * step; 

sum += 4.0/(1.0+x*x); 

} 

 

pi = step * sum; 

 

printf(“PI = %5lf (Error = %e)\n”, pi, fabs(acos(-1.0)-pi)); 

printf(“-----------------------------------------------------------\n”); 

 

return 0; 

 

} 



Any questions? 
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I .  Introduction to Col lect ive Operat ions in MPI  



Collective communication routines must involve all processes within the scope of a commu

nicator. 

 All processes are by default, members in the communicator MPI_COMM_WORLD. 

 Additional communicator can be defined by the programmer. See the Group and Com
municator Management Routine section for details. 

Unexpected behavior, including program failure, can occur if even one task in the communi

cator doesn't participate. 

It is the programmer's responsibility to ensure that all processes within a communicator par

ticipate in any collective operations. 

Scope 

57 



Synchronization 

 processes wait until all members of the group have reached the synchronization point. 

Data Movement 

 broadcast, scatter/gather, all to all. 

Collective Computation (reductions) 

 one member of the group collects data from the other members and performs an oper
ation (min, max, add, multiply, etc.) on that data. 

Type of Collective Operations 
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With MPI-3, collective operations can be blocking or non-blocking. Only blocking operation

s are covered in this tutorial. 

Collective communication routines do not take message tag arguments. 

Collective operations within subset of processes are accomplished by first partitioning the s

ubsets into new groups and then attaching the new groups to new communicators. 

Con only be used with MPI predefined datatypes – not with MPI Derived Data Types. 

MPI-2 extended most collective operations to allow data movement between intercommuni

cators (not covered here). 

Programming Considerations and Restrictions 
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I I .  Col lect ive Communicat ion Routine  



MPI_Barrier 

 Synchronization operation. Creates a barrier synchronization in a group. Each task, 
when reaching the MPI_Barrier call, blocks until all tasks in the group reach the same 
MPI_Barrier call. Then all tasks are free to proceed. 

Collective Communication Routines 
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C Fortran 

MPI_Barrier(comm) MPI_BARRIER(comm, ierr) 



MPI_Bcast 

 Data movement operation. Broadcasts (sends) a message from the process with rank "r
oot" to all other processes in the group.  

Collective Communication Routines 
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C Fortran 

MPI_Bcast(&buffer, count, datatype, 
root, comm) 

MPI_BCAST 
(buffer,count,datatype,root,comm,ie
rr) 



MPI_Scatter 

 Data movement operation. Distributes distinct messages from a single source task to e
ach task in the group.  
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C Fortran 

MPI_Scatter 
(&sendbuf,sendcnt,sendtype,&recv
buf, recvcnt,recvtype,root,comm) 

MPI_SCATTER 
(sendbuf,sendcnt,sendtype,recvbuf, 
recvcnt,recvtype,root,comm,ierr) 



MPI_Gather 

 Data movement operation. Gathers distinct messages from each task in the group to a 
single destination task. This routine is the reverse operation of MPI_Scatter.  

Collective Communication Routines 
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C Fortran 

MPI_Gather 
(&sendbuf,sendcnt,sendtype,&recv
buf, recvcount,recvtype,root,comm) 

MPI_GATHER 
(sendbuf,sendcnt,sendtype,recvbuf, 
recvcount,recvtype,root,comm,ierr) 



MPI_Allgather 

 Data movement operation. Concatenation of data to all tasks in a group. Each task in t
he group, in effect, performs a one-to-all broadcasting operation within the group. 
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C Fortran 

MPI_Allgather 
(&sendbuf,sendcount,sendtype,&re
cvbuf, recvcount,recvtype,comm) 

MPI_ALLGATHER 
(sendbuf,sendcount,sendtype,recvb
uf, recvcount,recvtype,comm,info) 



MPI_Reduce 

 Collective computation operation. Applies a reduction operation on all tasks in the gro
up and places the result in one task. 
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C Fortran 

MPI_Reduce 
(&sendbuf,&recvbuf,count,datatype,
op,root,comm) 

MPI_REDUCE 
(sendbuf,recvbuf,count,datatype,op,
root,comm,ierr) 



MPI Reduction Operation C Data Types 

MPI_MAX maximum integer, float 

MPI_MIN minimum integer, float 

MPI_SUM sum integer, float 

MPI_PROD product integer, float 

MPI_LAND logical AND integer 

MPI_BAND bit-wise AND integer, MPI_BYTE 

MPI_LOR logical OR integer 

MPI_BOR bit-wise OR integer, MPI_BYTE 

MPI_LXOR logical XOR integer 

MPI_BXOR bit-wise XOR integer, MPI_BYTE 

MPI_MAXLOC max value and location float, double and long double 

MPI_MINLOC min value and location float, double and long double 
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The predefined MPI reduction operations appear below. Users can also define their own 

reduction functions by using the MPI_Op_create routine. 



MPI_Allreduce 

 Collective computation operation + data movement. Applies a reduction operation and 
places the result in all tasks in the group. This is equivalent to an MPI_Reduce followed 
by an MPI_Bcast.  
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C Fortran 

MPI_Allreduce 
(&sendbuf,&recvbuf,count,datatype,
op,comm)  

MPI_ALLREDUCE 
(sendbuf,recvbuf,count,datatype,op,
comm,ierr) 



MPI_Reduce_scatter 

 Collective computation operation + data movement. First does an element-wise reducti
on on a vector across all tasks in the group. Next, the result vector is split into disjoint 
segments and distributed across the tasks. This is equivalent to an MPI_Reduce followe
d by an MPI_Scatter operation.  
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C Fortran 

MPI_Reduce_scatter 
(&sendbuf,&recvbuf,recvcount,datat
ype, op,comm) 

MPI_REDUCE_SCATTER 
(sendbuf,recvbuf,recvcount,datatype, 
op,comm,ierr) 



MPI_Alltoall 

 Data movement operation. Each task in a group performs a scatter operation, sending 
a distinct message to all the tasks in the group in order by index.  

Collective Communication Routines 
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C Fortran 

MPI_Alltoall 
(&sendbuf,sendcount,sendtype,&re
cvbuf, recvcnt,recvtype,comm) 

MPI_ALLTOALL 
(sendbuf,sendcount,sendtype,recvb
uf, recvcnt,recvtype,comm,ierr) 



MPI_Scan 

 Performs a scan operation with respect to a reduction operation across a task group. 

Collective Communication Routines 
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C Fortran 

MPI_Scan 
(&sendbuf,&recvbuf,count,datatype,
op,comm) 

MPI_SCAN 
(sendbuf,recvbuf,count,datatype,op,
comm,ierr) 
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#include "mpi.h" 

#include <stdio.h> 

#define SIZE 4 

 

int main(argc,argv) 

int argc; 

char *argv[];  { 

int numtasks, rank, sendcount, recvcount, source; 

float sendbuf[SIZE][SIZE] = { 

  {1.0, 2.0, 3.0, 4.0}, 

  {5.0, 6.0, 7.0, 8.0}, 

  {9.0, 10.0, 11.0, 12.0}, 

  {13.0, 14.0, 15.0, 16.0}  }; 

float recvbuf[SIZE]; 

 

MPI_Init(&argc,&argv); 

MPI_Comm_rank(MPI_COMM_WORLD, &rank); 

MPI_Comm_size(MPI_COMM_WORLD, &numtasks); 

 

Perform a scatter operation on the rows of an array 
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if (numtasks == SIZE) { 

  source = 1; 

  sendcount = SIZE; 

  recvcount = SIZE; 

  MPI_Scatter(sendbuf,sendcount,MPI_FLOAT,recvbuf,recvcount, 

             MPI_FLOAT,source,MPI_COMM_WORLD); 

 

  printf("rank= %d  Results: %f %f %f %f\n",rank,recvbuf[0], 

         recvbuf[1],recvbuf[2],recvbuf[3]); 

  } 

else 

  printf("Must specify %d processors. Terminating.\n",SIZE); 

 

MPI_Finalize(); 

 

return 0; 

 

} 



Advanced Example : Monte-Carlo Simulation for PI 
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#include <stdio.h> 

#include <stdlib.h> 

#include <math.h> 

 

int main() { 

const long num_step=100000000; 

long i, cnt; 

double pi, x, y, r; 

 

printf(“-----------------------------------------------------------\n”); 

pi = 0.0; 

cnt = 0; 

r = 0.0; 

 

for (i=0; i<num_step; i++) { 

  x = rand() / (RAND_MAX+1.0); 

  y = rand() / (RAND_MAX+1.0); 

  r = sqrt(x*x + y*y); 

  if (r<=1) cnt += 1; 

} 

 

pi = 4.0 * (double)(cnt) / (double)(num_step); 

printf(“PI = %17.15lf (Error = %e)\n”, pi, fabs(acos(-1.0)-pi)); 

printf(“-----------------------------------------------------------\n”); 

 

return 0; 

 

} 

Use the collective communication routines! 
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#include <stdio.h> 

#include <math.h> 

 

int main() { 

const long num_step=100000000; 

long i; 

double sum, step, pi, x; 

step = (1.0/(double)num_step); 

sum=0.0; 

 

printf(“-----------------------------------------------------------\n”); 

 

for (i=0; i<num_step; i++) { 

x = ((double)i - 0.5) * step; 

sum += 4.0/(1.0+x*x); 

} 

 

pi = step * sum; 

 

printf(“PI = %5lf (Error = %e)\n”, pi, fabs(acos(-1.0)-pi)); 

printf(“-----------------------------------------------------------\n”); 

 

return 0; 

 

} 

Use the collective communication routines! 



Coffee break 



I I I .  Advanced Features of the MPI  



MPI also provides facilities for you to define your own data structures based upon sequenc

es of the MPI primitive data types. Such user defined structures are called derived data typ

es.  

Primitive data types are contiguous. Derived data types allow you to specify non-contiguou

s data in a convenient manner and to treat it as though it was contiguous.  

MPI provides several methods for constructing derived data types: 

 Contiguous 

 Vector 

 Indexed 

 Struct 

Derived Data Types 
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MPI_Type_contiguous 

 The simplest constructor. Produces a new data type by making count copies of an exist
ing data type. 

• MPI_Type_contiguous (count,oldtype,&newtype) 

MPI_Type_vector 

 Similar to contiguous, but allows for regular gaps (stride) in the displacements. MPI_Ty
pe_hvector is identical to MPI_Type_vector except that stride is specified in bytes. 

• MPI_Type_vector (count,blocklength,stride,oldtype,&newtype) 

MPI_Type_indexed 

 An array of displacements of the input data type is provided as the map for the new d
ata type. MPI_Type_hindexed is identical to MPI_Type_indexed except that offsets are s
pecified in bytes. 

• MPI_Type_indexed (count,blocklens[],offsets[],old_type,&newtype) 

MPI_Type_struct 

 The new data type is formed according to completely defined map of the component d
ata types. 

• MPI_Type_struct (count,blocklens[],offsets[],old_types,&newtype) 

Derived Data Type Routines 
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MPI_Type_extent 

 Returns the size in bytes of the specified data type. Useful for the MPI subroutines tha
t require specification of offsets in bytes. 

• MPI_Type_extent (datatype,&extent) 

MPI_Type_commit 

 Commits new datatype to the system. Required for all user constructed (derived) datat
ypes. 

• MPI_Type_commit (&datatype) 

MPI_Type_free 

 Deallocates the specified datatype object. Use of this routine is especially important to 
prevent memory exhaustion if many datatype objects are created, as in a loop. 

• MPI_Type_free (&datatype) 

Derived Data Type Routines 

81 



Example : Contiguous Derived Data Type 
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Create a data type representing a row of an array and distribute a different row to all proce

sses. 
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#include "mpi.h" 

#include <stdio.h> 

#define SIZE 4 

 

int main(argc,argv) 

int argc; 

char *argv[];  { 

int numtasks, rank, source=0, dest, tag=1, i; 

float a[SIZE][SIZE] = 

  {1.0, 2.0, 3.0, 4.0, 

   5.0, 6.0, 7.0, 8.0, 

   9.0, 10.0, 11.0, 12.0, 

   13.0, 14.0, 15.0, 16.0}; 

float b[SIZE]; 

 

MPI_Status stat; 

MPI_Datatype rowtype; 

 

MPI_Init(&argc,&argv); 

MPI_Comm_rank(MPI_COMM_WORLD, &rank); 

MPI_Comm_size(MPI_COMM_WORLD, &numtasks); 

 

MPI_Type_contiguous(SIZE, MPI_FLOAT, &rowtype); 

MPI_Type_commit(&rowtype); 
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if (numtasks == SIZE) { 

  if (rank == 0) { 

     for (i=0; i<numtasks; i++) 

       MPI_Send(&a[i][0], 1, rowtype, i, tag, MPI_COMM_WORLD); 

     } 

 

  MPI_Recv(b, SIZE, MPI_FLOAT, source, tag, MPI_COMM_WORLD, &stat); 

  printf("rank= %d  b= %3.1f %3.1f %3.1f %3.1f\n", 

         rank,b[0],b[1],b[2],b[3]); 

  } 

else 

  printf("Must specify %d processors. Terminating.\n",SIZE); 

 

MPI_Type_free(&rowtype); 

MPI_Finalize(); 

 

return 0; 

 

} 



Example : Vector Derived Data Type 
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Create a data type representing a column of an array and distribute different columns to all 

processes. 
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#include "mpi.h" 

#include <stdio.h> 

#define SIZE 4 

 

int main(argc,argv) 

int argc; 

char *argv[];  { 

int numtasks, rank, source=0, dest, tag=1, i; 

float a[SIZE][SIZE] =  

  {1.0, 2.0, 3.0, 4.0,   

   5.0, 6.0, 7.0, 8.0,  

   9.0, 10.0, 11.0, 12.0, 

  13.0, 14.0, 15.0, 16.0}; 

float b[SIZE];  

 

MPI_Status stat; 

MPI_Datatype columntype; 

 

MPI_Init(&argc,&argv); 

MPI_Comm_rank(MPI_COMM_WORLD, &rank); 

MPI_Comm_size(MPI_COMM_WORLD, &numtasks); 

    

MPI_Type_vector(SIZE, 1, SIZE, MPI_FLOAT, &columntype); 

MPI_Type_commit(&columntype); 
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if (numtasks == SIZE) { 

  if (rank == 0) { 

     for (i=0; i<numtasks; i++)  

       MPI_Send(&a[0][i], 1, columntype, i, tag, MPI_COMM_WORLD); 

        } 

  

  MPI_Recv(b, SIZE, MPI_FLOAT, source, tag, MPI_COMM_WORLD, &stat); 

  printf("rank= %d  b= %3.1f %3.1f %3.1f %3.1f\n", 

        rank,b[0],b[1],b[2],b[3]); 

  } 

else 

  printf("Must specify %d processors. Terminating.\n",SIZE); 

    

MPI_Type_free(&columntype); 

MPI_Finalize(); 

 

return 0; 

 

} 



Example : Indexed Derived Data Type 
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Create a datatype by extracting variable portions of an array and distribute to all tasks. 



Example : Indexed Derived Data Type (1/2) 

89 

#include "mpi.h" 

#include <stdio.h> 

#define NELEMENTS 6 

 

int main(argc,argv) 

int argc; 

char *argv[];  { 

int numtasks, rank, source=0, dest, tag=1, i; 

int blocklengths[2], displacements[2]; 

float a[16] =  

  {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0,  

   9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0}; 

float b[NELEMENTS];  

 

MPI_Status stat; 

MPI_Datatype indextype; 

 

MPI_Init(&argc,&argv); 

MPI_Comm_rank(MPI_COMM_WORLD, &rank); 

MPI_Comm_size(MPI_COMM_WORLD, &numtasks); 

 

blocklengths[0] = 4; 

blocklengths[1] = 2; 

displacements[0] = 5; 

displacements[1] = 12; 
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MPI_Type_indexed(2, blocklengths, displacements, MPI_FLOAT, &indextype); 

MPI_Type_commit(&indextype); 

 

if (rank == 0) { 

  for (i=0; i<numtasks; i++)  

     MPI_Send(a, 1, indextype, i, tag, MPI_COMM_WORLD); 

  } 

  

MPI_Recv(b, NELEMENTS, MPI_FLOAT, source, tag, MPI_COMM_WORLD, &stat); 

printf("rank= %d  b= %3.1f %3.1f %3.1f %3.1f %3.1f %3.1f\n", 

     rank,b[0],b[1],b[2],b[3],b[4],b[5]); 

    

MPI_Type_free(&indextype); 

MPI_Finalize(); 

 

return 0; 

 

} 
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Create a data type that represents a particle and distribute an array of such particles to all 

processes. 
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#include "mpi.h" 

#include <stdio.h> 

#define NELEM 25 

 

int main(argc,argv) 

int argc; 

char *argv[];  { 

int numtasks, rank, source=0, dest, tag=1, i; 

 

typedef struct { 

  float x, y, z; 

  float velocity; 

  int  n, type; 

  }          Particle; 

Particle     p[NELEM], particles[NELEM]; 

MPI_Datatype particletype, oldtypes[2];  

int          blockcounts[2]; 

 

/* MPI_Aint type used to be consistent with syntax of */ 

/* MPI_Type_extent routine */ 

MPI_Aint    offsets[2], extent; 
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MPI_Status stat; 

 

MPI_Init(&argc,&argv); 

MPI_Comm_rank(MPI_COMM_WORLD, &rank); 

MPI_Comm_size(MPI_COMM_WORLD, &numtasks); 

  

/* Setup description of the 4 MPI_FLOAT fields x, y, z, velocity */ 

offsets[0] = 0; 

oldtypes[0] = MPI_FLOAT; 

blockcounts[0] = 4; 

 

/* Setup description of the 2 MPI_INT fields n, type */ 

/* Need to first figure offset by getting size of MPI_FLOAT */ 

MPI_Type_extent(MPI_FLOAT, &extent); 

offsets[1] = 4 * extent; 

oldtypes[1] = MPI_INT; 

blockcounts[1] = 2; 

 

/* Now define structured type and commit it */ 

MPI_Type_struct(2, blockcounts, offsets, oldtypes, &particletype); 

MPI_Type_commit(&particletype); 
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/* Initialize the particle array and then send it to each task */ 

if (rank == 0) { 

  for (i=0; i<NELEM; i++) { 

     particles[i].x = i * 1.0; 

     particles[i].y = i * -1.0; 

     particles[i].z = i * 1.0;  

     particles[i].velocity = 0.25; 

     particles[i].n = i; 

     particles[i].type = i % 2;  

     } 

  for (i=0; i<numtasks; i++)  

     MPI_Send(particles, NELEM, particletype, i, tag, MPI_COMM_WORLD); 

  } 

  

MPI_Recv(p, NELEM, particletype, source, tag, MPI_COMM_WORLD, &stat); 

 

/* Print a sample of what was received */ 

printf("rank= %d   %3.2f %3.2f %3.2f %3.2f %d %d\n", rank,p[3].x, 

     p[3].y,p[3].z,p[3].velocity,p[3].n,p[3].type); 

    

MPI_Type_free(&particletype); 

MPI_Finalize(); 

 

return 0; 

 

} 



Coffee break 



A group is an ordered set of processes. Each process in a group is associated with a unique integer 

rank. Rank values start at zero and go to N-1, where N is the number of processes in the group. In 

MPI, a group is represented within system memory as an object. It is accessible to the programme

r only by a "handle". A group is always associated with a communicator object.  

A communicator encompasses a group of processes that may communicate with each other. All M

PI messages must specify a communicator. In the simplest sense, the communicator is an extra "ta

g" that must be included with MPI calls. Like groups, communicators are represented within syste

m memory as objects and are accessible to the programmer only by "handles". For example, the h

andle for the communicator that comprises all tasks is MPI_COMM_WORLD.  

From the programmer's perspective, a group and a communicator are one. The group routines are 

primarily used to specify which processes should be used to construct a communicator. 

Groups vs. Communicators 
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Allow you to organize tasks, based upon function, into task groups.  

Enable Collective Communications operations across a subset of related tasks.  

Provide basis for implementing user defined virtual topologies  

Provide for safe communications 

Primary Purposes of Group and Communicator Objects 
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Groups/communicators are dynamic - they can be created and destroyed during program e

xecution.  

Processes may be in more than one group/communicator. They will have a unique rank with

in each group/communicator.  

MPI provides over 40 routines related to groups, communicators, and virtual topologies.  

Typical usage: 

 Extract handle of global group from MPI_COMM_WORLD using MPI_Comm_group 

 Form new group as a subset of global group using MPI_Group_incl 

 Create new communicator for new group using MPI_Comm_create 

 Determine new rank in new communicator using MPI_Comm_rank 

 Conduct communications using any MPI message passing routine 

 When finished, free up new communicator and group (optional) using MPI_Comm_free 
and MPI_Group_free 

Programming Considerations for Group/Communicator 
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Example : Group and Communicator Routine (1/2) 
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#include "mpi.h" 

#include <stdio.h> 

#define NPROCS 8 

 

int main(argc,argv) 

int argc; 

char *argv[];  { 

int        rank, new_rank, sendbuf, recvbuf, numtasks, 

           ranks1[4]={0,1,2,3}, ranks2[4]={4,5,6,7}; 

MPI_Group  orig_group, new_group; 

MPI_Comm   new_comm; 

 

MPI_Init(&argc,&argv); 

MPI_Comm_rank(MPI_COMM_WORLD, &rank); 

MPI_Comm_size(MPI_COMM_WORLD, &numtasks); 

 

if (numtasks != NPROCS) { 

  printf("Must specify MP_PROCS= %d. Terminating.\n",NPROCS); 

  MPI_Finalize(); 

  exit(0); 

  } 

 

sendbuf = rank; 

 

Create two different process groups for separate collective communications exchange. Requ

ires creating new communicators also. 
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/* Extract the original group handle */ 

MPI_Comm_group(MPI_COMM_WORLD, &orig_group); 

 

/* Divide tasks into two distinct groups based upon rank */ 

if (rank < NPROCS/2) { 

  MPI_Group_incl(orig_group, NPROCS/2, ranks1, &new_group); 

  } 

else { 

  MPI_Group_incl(orig_group, NPROCS/2, ranks2, &new_group); 

  } 

 

/* Create new new communicator and then perform collective communications */ 

MPI_Comm_create(MPI_COMM_WORLD, new_group, &new_comm); 

MPI_Allreduce(&sendbuf, &recvbuf, 1, MPI_INT, MPI_SUM, new_comm); 

 

MPI_Group_rank (new_group, &new_rank); 

printf("rank= %d newrank= %d recvbuf= %d\n",rank,new_rank,recvbuf); 

 

MPI_Finalize(); 

 

return 0; 

 

} 



In terms of MPI, a virtual topology describes a mapping/ordering of MPI processes into a g

eometric "shape".  

The two main types of topologies supported by MPI are Cartesian (grid) and Graph.  

MPI topologies are virtual - there may be no relation between the physical structure of the 

parallel machine and the process topology.  

Virtual topologies are built upon MPI communicators and groups.  

Must be "programmed" by the application developer. 

Virtual Topology 

101 



Convenience 

 Virtual topologies may be useful for applications with specific communication patterns 
- patterns that match an MPI topology structure. 

 For example, a Cartesian topology might prove convenient for an application that requi
res 4-way nearest neighbor communications for grid based data. 

Communication Efficiency 

 Some hardware architectures may impose penalties for communications between succe
ssively distant "nodes". 

 A particular implementation may optimize process mapping based upon the physical c
haracteristics of a given parallel machine. 

 The mapping of processes into an MPI virtual topology is dependent upon the MPI im
plementation, and may be totally ignored. 

Why Use Virtual Topologies 
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Example : Cartesian Virtual Topology (1/3) 
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A simplified mapping of processes into a Cartesian virtual topology appears below : 

 

 

 

 

 

 

 

 

Create a 4 x 4 Cartesian topology from 16 processors and have each process exchange its r

ank with four neighbors. 
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#include "mpi.h" 

#include <stdio.h> 

#define SIZE 16 

#define UP    0 

#define DOWN  1 

#define LEFT  2 

#define RIGHT 3 

 

int main(argc,argv) 

int argc; 

char *argv[];  { 

int numtasks, rank, source, dest, outbuf, i, tag=1,  

   inbuf[4]={MPI_PROC_NULL,MPI_PROC_NULL,MPI_PROC_NULL,MPI_PROC_NULL,},  

   nbrs[4], dims[2]={4,4},  

   periods[2]={0,0}, reorder=0, coords[2]; 

 

MPI_Request reqs[8]; 

MPI_Status stats[8]; 

MPI_Comm cartcomm; 

 

MPI_Init(&argc,&argv); 

MPI_Comm_size(MPI_COMM_WORLD, &numtasks); 

 

if (numtasks == SIZE) { 

  MPI_Cart_create(MPI_COMM_WORLD, 2, dims, periods, reorder, &cartcomm); 

  MPI_Comm_rank(cartcomm, &rank); 

  MPI_Cart_coords(cartcomm, rank, 2, coords); 

  MPI_Cart_shift(cartcomm, 0, 1, &nbrs[UP], &nbrs[DOWN]); 

  MPI_Cart_shift(cartcomm, 1, 1, &nbrs[LEFT], &nbrs[RIGHT]); 
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  printf("rank= %d coords= %d %d  neighbors(u,d,l,r)= %d %d %d %d\n", 

         rank,coords[0],coords[1],nbrs[UP],nbrs[DOWN],nbrs[LEFT], 

         nbrs[RIGHT]); 

 

  outbuf = rank; 

 

  for (i=0; i<4; i++) { 

     dest = nbrs[i]; 

     source = nbrs[i]; 

     MPI_Isend(&outbuf, 1, MPI_INT, dest, tag,  

               MPI_COMM_WORLD, &reqs[i]); 

     MPI_Irecv(&inbuf[i], 1, MPI_INT, source, tag,  

               MPI_COMM_WORLD, &reqs[i+4]); 

     } 

 

  MPI_Waitall(8, reqs, stats); 

    

  printf("rank= %d                  inbuf(u,d,l,r)= %d %d %d %d\n", 

         rank,inbuf[UP],inbuf[DOWN],inbuf[LEFT],inbuf[RIGHT]);  } 

else 

  printf("Must specify %d processors. Terminating.\n",SIZE); 

    

MPI_Finalize(); 

 

return 0; 

 

} 



Intentionally, the MPI-1 specification did not address several "difficult" issues. For reasons o

f expediency, these issues were deferred to a second specification, called MPI-2 in 1997.  

MPI-2 was a major revision to MPI-1 adding new functionality and corrections.  

Key areas of new functionality in MPI-2: 

 Dynamic Processes - extensions that remove the static process model of MPI. Provides 
routines to create new processes after job startup.  

 One-Sided Communications - provides routines for one directional communications. In
clude shared memory operations (put/get) and remote accumulate operations.  

 Extended Collective Operations - allows for the application of collective operations to i
nter-communicators  

 External Interfaces - defines routines that allow developers to layer on top of MPI, suc
h as for debuggers and profilers.  

 Additional Language Bindings - describes C++ bindings and discusses Fortran-90 issue
s.  

 Parallel I/O - describes MPI support for parallel I/O. 
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The MPI-3 standard was adopted in 2012, and contains signicant extensions to MPI-1 and 

MPI-2 functionality including: 

 Non-blocking Collective Operations - permits tasks in a collective to perform operation
s without blocking, possibly offering performance improvements.  

 New one-sided communication operations - to better handle different memory models.  

 Neighborhood Collectives - Extends the distributed graph and Cartesian process topolo
gies with additional communication power.  

 Fortran 2008 bindings - expanded from Fortran90 bindings  

 MPIT Tool Interface - This new tool interface allows the MPI implementation to expose 
certain internal variables, counters, and other states to the user (most likely performan
ce tools).  

 Matched Probe - Fixes an old bug in MPI-2 where one could not probe for messages in 
a multi-threaded environment. 
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Any questions? 


